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Transient axisymmetric motion of a floating cylinder 
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A linear theory is developed in the time domain for vertical motions of an 
axisymmetric cylinder floating in the free surface. The velocity potential is obtained 
numerically from a discretized boundary-integral-equation on the body surface, using 
a Galerkin method. The solution proceeds in time steps, but the coefficient matrix 
is identical at each step and can be inverted at the outset. 

Free-surface effects are absent in the limits of zero and infinite time. The added 
mass is determined in both casesfor a broad range of cylinder depths. For a semi-infinite 
cylinder the added mass is obtained by extrapolation. 

An impulse-response function is used to describe the free-surface effects in the time 
domain. An oscillatory error observed for small cylinder depths is related to the 
irregular frequencies of the solution in the frequency domain. Fourier transforms of 
the impulse-response function are compared with direct computations of the damping 
and added-mass coefficients in the frequency domain. The impulse-response function 
is also used to compute the free motion of an unrestrained cylinder, following an initial 
displacement or acceleration. 

1. Introduction 
If a floating body performs unsteady motions of small amplitude, the linearized 

hydrodynamic pressure force exerted on the fluid can be analysed either in the time 
or the frequency domain. The latter, which usually is employed, corresponds to a 
physical situation where the motions of the body and surrounding fluid are harmonic 
in time. In  this case the dynamic pressure force due to the motions of the body can 
be expressed as a linear function of its velocity and acceleration, with the respective 
coefficients known as the damping and added mass. Both coefficients are frequency 
dependent. Numerous computational studies have been performed in the frequency 
domain to determine these coefficients for specific two- and three-dimensional bodies. 

The linear analysis for the analogous time-domain problem is described by 
Wehausen (1971), but few computations have been made directly from this basis. A 
canonical body motion can be assumed, such as a step-function velocity and 
delta-function acceleration. In  this case the subsequent time-varying force exerted 
by the body on the surrounding fluid is known as the impulse-response function. Since 
free-surface effects persist indefinitely in an inviscid fluid, the impulse-response 
function has the same property. 

Another type of transient problem may be defined, where the body is given an 
initial disturbance from equilibrium, and subsequently responds freely to the 
pressure force generated by its motion. Computations of such ' free-body ' motions 
have been performed from two-dimensional solutions in the time domain by Adachi 
& Ohmatsu (1979) and Yeung (1982). 
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As in the analysis of other linear systems, Fourier synthesis provides a connection 
between the time and frequency domains. The damping and added mass can be 
derived indirectly as conjugate Fourier transforms of the impulse response. Alterna- 
tively, the impulse response can be evaluated as the inverse transform of either 
coefficient in the frequency domain. Indirect solutions of the free-body problem also 
can be based on Fourier analysis of the frequency-domain coefficients; this approach 
was initiated by Ursell (1964), and has been followed by Maskell & Ursell (1970) for 
a floating semicircle, and by Kotik & Lurye (1968) with an approximate analysis for 
a hemisphere. 

Fourier analysis of transient experimental data has been proposed by Davis & 
Zarnick (1964), as an economical technique for measuring the motions of ship models 
in waves. This procedure has been applied by Ohmatsu (1980), but with limited 
accuracy at low frequencies. The present study illustrates the use of this technique 
in theoretical computations, by deriving the damping and added-mass coefficients 
of a floating body from Fourier transforms of the impulse-response function. It will 
be shown that this approach can be effective for an axisymmetric body, and the 
method which is employed can be extended to fully three-dimensional bodies of 
arbitrary shape. For complicated bodies which are described by a large number of 
discretized panels, this technique offers a theoretical advantage by reducing the 
computational burden of matrix analysis. 

In  the present work the three-dimensional floating-body problem is solved directly 
in the time domain to determine the impulse response of a circular cylinder with 
horizontal base, floating in water of infinite depth and moving parallel to the vertical 
axis. Green’s theorem is used to obtain an integral equation for the velocity potential 
on the body surface. Integration of the Green function with respect to the angular 
coordinate yields a one-dimensional integral equation, with the singular element of 
the kernel expressed in terms of elliptic integrals. A Galerkin scheme is used to 
discretize the integral equation and Romberg quadratures are employed on each 
segment of the body. The body surface is replaced by a non-uniform grid of segments, 
concentrated near the corner. The solution is carried out in uniform time steps, with 
the velocity potential on the body obtained from a linear system of simultaneous 
algebraic equations. 

The analytic basis for the problem is set forth in $2, followed in $3 by a study of 
the non-free-surface part of the solution and an evaluation of the two complementary 
limits for the added mass at zero and infinite time. (These correspond respectively 
to the limits of infinity and zero in the frequency domain, and by reflection to a double 
body in an unbounded fluid when the image moves either in phase with the lower 
half or in the opposite direction.) When the cylinder depth vanishes, classical results 
are recovered for the added mass of a thin circular disk. In  the converse case, the 
added mass of a semi-infinite cylinder is derived by extrapolation. 

The free-surface solution is developed in $4. The velocity potential obtained at each 
time step is integrated over the bottom of the cylinder to give a ‘ time-dependent 
added mass’. Numerical differentiation of this function with respect to time gives the 
pressure-force equivalent to the impulse-response function. Confirmation for the 
numerical results is demonstrated in $5 by comparing the Fourier transforms with 
the frequency-domain solution for the same body. The impulse-response function is 
used in $6 to study the free-body motions following an initial displacement or imposed 
velocity. 

The possible advantages of using the impulse-response function as a practical 
computational tool for complicated three-dimensional body shapes are discussed in 
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$7 .  Unlike the analogous situation in the frequency domain, the coefficient matrix 
of the linear syatem which must be solved in the time domain is real, independent 
of free-surface effects, and can be inverted initially to reduce the computational 
burden at each time step. For fully three-dimensional vessels which must be 
represented by very large numbers of discrete panel elements, these differences imply 
a significant computational advantage for the time-domain approach. 

2. Mathematical formulatisn 
A right-circular cylinder with vertical axis floats in the free surface with its bottom 

at a depth D, as shown in figure 1. The fluid is unbounded in the domain beneath 
the free surface, exterior to the body. It is convenient to assume unit values for the 
cylinder radius, gravity, and the fluid density; hence the.physica1 parameters of the 
problem are non-dimensionalized at the outset in terms of these three scales. Polar 
coordinates are used with the radial distance r measured from the vertical z-axis, z = 0 
the plane of the free surface, and z positive upwards. 

Starting from an initial state of rest at time t = 0, the body is forced to move 
vertically with a (non-dimensional) velocity V ( t )  of small magnitude. The latter 
restriction justifies a linear theory. Notwithstanding this restriction, it can be 
assumed in the derivation that V(t )  is the unit step function, and the body 
acceleration is a delta function at t = 0. The resultant force exerted by the body on 
the fluid is referred to as the impulse-response function. More general vertical motions 
of the body can be analysed by linear superposition, or by convolution of the body 
acceleration and the impulse-response function. 

Anticipating an axisymmetric flow, the velocity potential #(r ,  z, t )  is subject to 
Laplace’s equation in the fluid domain, the free-surface boundary condition 

#t t+#z  = 0 on z = 0, (1) 

# , = O  o n r = l ,  - D < z < O ,  (2) 

#z = V ( t )  on z = -D, 0 < r < 1. (3) 

and the body-surface boundary conditions 

At  large distances from the body the potential must vanish? for all finite times. Both 
the potential and its first time derivative must vanish on the free surface for t f 0. 

Following Wehausen (1971), an integral equation for the velocity potential on the 
body surface can be derived from the time-dependent three-dimensional Green 
function G(r, z, T’, z’, 8, t ) ,  defined in the Appendix by (A 1). This Green function can 
be interpreted as the potential at the field point ( r , z )  due to a submerged source 
located at (r’, z’), and depending also on the polar angle B between r and r’. The source 
strength is a unit step function, jumping from zero to one at t = 0. If Green’s theorem 
is applied to this function, with retarded time ( t - T ) ,  and to the time derivative of 
the velocity potential, the resulting integral equation for field points on the body 
surface S takes the form 

(4) 
t Like the Green function, the potential is O(+) at large radial distances from the body. 

However it is sufficient in the problem statement to require boundedness at infinity (Stoker 1957, 
p. 191). 
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FIQURE 1 .  Sketch of cylinder in the azimuthal plane. 

The normal derivatives of G in (4) are defined with respect to the source coordinates 
(r’, 2’) .  In the last term S,  denotes the bottom surface of the body where (3) applies. 
For clarity the spatial arguments of the Green function are not displayed. 

Since the velocity potential is axisymmetric, the surface integrals in (4) can be 
integrated with respect to the angular coordinate, using results from the Appendix. 
This reduction yields line integrals along the trace C of the body surface in the (r, z )  
plane, with the Green function replaced by an axisymmetric ring source. Thus (4) 
is replaced by the one-dimensional integral equation 

t 

2 n # ( r , ~ , t ) + ~ ~  dT Jc # ( r ’ , z ’ , ~ ) G ~ ~ ) ( t - ~ ) d l +  #(r’,z’,t)Gg) d2 
J C  

= JcB [G(O) + G(F)(t)] dl. (5 )  

Here (r, z )  is on C, and CB denotes the portion of C on the bottom of the cylinder. 
The differential element dl denotes r’ dr’ on the bottom, or dz‘ on the side of C. G(O) 
is the contribution from the Rankine source 1/R and its negative image above the 
free surface. This function and its normal derivative are expressed by (A 3-A 8) in 
terms of complete elliptic integrals which are logarithmically singular when the 
source and field points coincide. Since the remaining free-surface contribution G(F) 
vanishes when t = 0, G(O) represents the initial value of the total Green function. 

Following the usual approach of boundary-integral methods, ( 5 )  is replaced by a 
linear system of algebraic equations corresponding to discrete segments of the body 
contour. For this purpose the contour CB (0 < r < 1 ; z = -D) is subdivided into NB 
segments S, ( j  = 1,2, .. ., NB) and the side ( r  = 1 ; - D  < 2 < 0) into a similar set of 
Ns elements ( j  = N B  + 1, . . . , N). The ensemble of N = NB + N ,  segments is ordered 
in sequence starting at the cylinder axis, proceeding to the corner and then up to 
the free surface. The potential is assumed constant on each segment, with the value 

Invoking a Galerkin procedure, both sides of (5)  are integrated over the segment 
4, on 8,- 

S, to yield the system of Volterra equations 

The four matrices in (6) are defined by 



Transient axisymmetric motion of a Jloating cylinder 21 

Si, is the Kroenecker delta, and 
r 

is the area spanned by the corresponding segment on 8. 
It is advantageous to use a finer subdivision of segments near the corner, since the 

solution is singular at this point, and also because the contribution to the hydrodynamic 
force from the pressure on the bottom increases in proportion to the radius. An 
appropriate choice is to use ‘cosine spacing’ on both the bottom and the side, with 
the segments on these two surfaces defined by the following end points: 

r,=sin(&) ( j = 0 , 1  ,... NB), 

Z, = - D  cos -- “-W (j = N B , N B +  1, ..., N ) .  ( 2Ns ) 
After the total number N of segments is prescribed, usually as a power of two, the 
integer NB is selected to minimize the discontinuity of segment length at the corner. 
With the segments defined by their end points in this manner, the area (11) of each 
segment is given by 

8, = x(r,”-r,”-,) (j = 1,2,  ..., NB), (14) 

$3 = 2n(z.j-25-1) (j = NB+1,NB+27 . . . , N ) .  (15) 

3. The limits for t = 0 and infinity 
Free-surface effects are absent in the limit t = 0. The integral equation (5 )  involves 

only the Green function G(O), the Rankine ring source and its negative image above 
the free surface. The discretized equation (6) simplifies to the form 

where, after combining (7) and (9) with (A 3-A 8), 

Here (K, E) are the complete elliptic integrals with p* and the parameter m defined 
by (A &A 5) .  The symbol A is used to denote image quantities above the free surface, 
with the sign of z’ reversed, and ( A )  denotes the image of all preceding terms in braces. 
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D 

0.0625 
0.125 
0.25 
0.5 
1 .o 
2.0 
4.0 
8.0 
00 

M(O) 
1.4820 
1.5533 
1.6422 
1.7414 
1.8390 
1.9215 
1.9814 
2.0190 
2.064 

" 0 0 )  

2.5887 
2.5371 
2.4652 
2.3775 
2.2859 
2.2057 
2.1467 
2.1091 
2.064 

TABLE 1.  Added-mass coefficients for cylinders of various depths D, in the limits t = 0 and 
t = c o  

To evaluate the matrices (17) and (18), polynomial approximations are used for 
the elliptic integrals (Abramowitz & Stegun 1964, equations 17.3.33-34), and Romberg 
quadratures for the numerical integration over each segment to a minimum absolute 
tolerance of lov5. Since K(m) is logarithmically singular when m tends to unity, all 
contributions to the integrand of order log (1 - m) or (1 - m) log (1 - m) are subtracted 
and integrated analytically. This special treatment of the logarithmic terms is made 
for all segments on the bottom or side if the corresponding term is singular at any 
point thereon. To the order indicated above the singular contributions in (17) and 
(18) are identical. 

After solving (16) for the unknown vector q5j(0), the added mass at t = 0 may be 
obtained by integration in the form 

The results of this computation are given in table 1, and plotted in figure 2. Also 
included are the complementary results which follow in the limit t = a, defined more 
explicitly as the zero-frequency limit of the added-mass coefficient in the frequency 
domain. An alternative physical interpretation is in terms of a dilating double body 
in an infinite fluid, with the upper and lower ends moving in opposite directions. This 
complementary limit corresponds to a homogeneous Neumann condition on the free 
surface; the corresponding results are obtained simply by reversing the sign of the 
image terms in (17) and (18). 

The added-mass coefficients listed in table 1 are derived from computations with 
8, 16, 32 and 64 total segments on the body. In all cases the sequence is monotone 
decreasing as N increases. The convergence rate appears to be nearly quadratic. For 
example, with D = 0.5 the sequence for M(0)  is 1.7629, 1.7474, 1.7432, 1.7419. The 
entries in table 1 for finite values of D have been derived by Richardson extrapolation 
of each such sequence, and are believed to be accurate to at least three decimal places. 

In the limit D = 0, the cylinder collapses onto a circular disk of unit radius in the 
plane z = 0. Analytical results are available from Lamb (1932, Section 102), with 
M(0)  = + and M ( a )  = $. (The latter value is derived by integrating the potential in 
Lamb's equation 1 1  .) 

The converse limit, D + a ,  corresponds to the axial added mass of a semi-infinite 
cylinder. No analytical result is known for this case, but when the depth is large 
slender-body theory suggests that the effect from the opposite body end can be 
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FIGURE 2. Added-mass coefficients in the limits of time equal to zero and infinity. Note that the 
abscissa is redefined to be inversely proportional to the depth D for D > 2, to display the asymptotic 
dependence in (20). The common limit of these two curves for D = 0 is the added mass from the 
end of a semi-infinite cylinder. 

approximated by a point source equal in strength to the flux across that end, with 
a potential inversely proportional to the distance 2 0  (cf. Newman 1977). From this 
approximation it follows for D % 1 that 

M N C + L ,  t = (:), 
- 8 0  

where C is a constant and the sign (+ or -) corresponds to the image for t = 00 or 
0, respectively. Using (20) a numerical extrapolation may be performed separately 
from the two columns of data in table 1, with the common limit C = 2.064. This 
extrapolation is indicated by the broken curves in figure 2, which are plotted in the 
domain D > 2 with an inverse scale for the abscissa. 

4. Solution of the free-surface problem 
A uniform discretization in time reduces (6) to a linear system of algebraic 

equations which may be solved directly at each time step. Equivalently, the 
convolution integral in (6) may be evaluated by the trapezoidal rule, with the result 

Here A denotes the time step, and tn = nA is the time after the nth step. The primed 
summation sign denotes that the term m = 0 is multiplied by one half, corresponding 
to one end point of the trapezoidal rule. 

Since the time derivative of (A 9) vanishes at t = 0, there is no contribution from 
(8) at the upper limit of the integral and no corresponding term with m = n in (21). 
As a result, the only contribution to (21) from the new unknown vector $,(tn) at each 
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time step is in the first term, where the coefficient matrix is independent of time and 
may be inverted at the outset. Thus the solution may be expressed explicitly in the 
form 

where the first factor on the right side of this equation is the inverse of the matrix 

The first task in the numerical analysis of (22) involves computing the matrix (17),  
in the manner outlined in $3, and evaluating its inverse by Gauss elimination. (For 
a fully three-dimensional body, where N is substantially larger, decomposition of the 
coefficient matrix into lower- and upper-triangular matrices would be more effective 
at this stage.) Subsequently, for each time step, the time-dependent free-surface 
matrices (8) and (10) are evaluated in the manner described below. The remaining 
operations to evaluate the terms in braces in (22) are straightforward, and after 
carrying out the indicated matrix product the velocity potential for each segment 
is obtained at the new time step. 

The evaluation of the time-dependent matrices (8) and (10) involves double 
integration of the free-surface Green function (A 9) and its derivatives. This is effected 
by reversing the order of integration and evaluating the double integrals over the 
pair of segments under the integral sign in (A 9). These integrals can be evaluated 
in closed form. The remaining single integral in (A 9) is evaluated by Romberg 
quadrature5 in unit steps of the variable ki, with an absolute convergence requirement 
of applied at each step. 

If the matrix elements are stored for use at subsequent time steps the computational 
burden is linear for increasing time, except for the convolution summation over the 
index m which increases quadratically. 

After each time step the velocity potential is integrated over the bottom surface 
in a similar manner to (19), to give the transient added-mass coefficient 

(17)- 

The term 'transient added mass' is analogous to the more conventional frequency- 
dependent added-mass coefficient p(w) in the frequency domain. The pressure force 
acting on the fluid is the time derivative of (23), in accordance with the linearized 
Bernoulli equation. Since the body velocity is a step function, the pressure force is 
equivalent to the time derivative of the 'transient added momentum' equal to the 
product of the added mass and body velocity. Alternatively, M ( t )  can be interpreted 
as the force due to a unit step-function acceleration of the body. This provides a more 
physical interpretation for the limit of (23) as t +  co. The definition (23) is consistent 
with the limits for t = 0 and infinity as defined in $3. 

The impulse-response function can be evaluated as the derivative of (23) from the 
central-difference formula 

Here the notation of Wehausen (1971) is adopted, with L(t) the pressure force exerted 
by the body on the fluid following a delta-function acceleration from a state of rest. 
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FIGURE 3. Transient added-mass coefficients for a family of cylinders with depths as shown. 

More generally, for a time history with continuous acceleration V'( t ) ,  the hydrodynamic 
pressure force is given by the convolution 

t 
F(t)  = M(0)  v ' ( t )+l  Vl(t-7)L(7)d7. 

0 

Computations of the transient added mass (23) and impulse-response function (24) 
are presented in figures 3 and 4 for several values of the cylinder depth D. The added 
mass increases from an initial value with zero slope at t = 0, reaches a single 
maximum, and then approaches the infinite-time limit from above. The impulse- 
response function increases linearly from zero at t = 0, reaches a maximum positive 
value before changing sign, and finally approaches zero from below as t -+ co. 
Free-surface effects are diminished as D increases. The limit for D = a0 is reproduced 
in figure 3 from table 1. 

Asymptotic expansions can be derived by expressing the impulse-response function 
as the inverse sine transform of the damping coefficient (cf. (30) below). For small 
values of t ,  this transform can be expanded in a convergent power series with odd 
powers only, making use of the fact that the damping coefficient is exponentially small 
for high frequencies. (The latter bound requires D > 0.) By integration, M(t )  can be 
expanded in an analogous series with even powers of t .  Thus the curves in figure 3 
have zero slope at t = 0, and the impulse-response functions shown in figure 4 behave 
linearly near the origin. 

For large values oft, the impulse-response function is related to the low-frequency 
asymptotic behaviour of the damping coefficient. Two terms in the latter expansion 
are easily derived by using the Haskind relations and the low-frequency approximation 
for the exciting force (Newman 1977, equations 6.169-173). After partial integration 
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FIGURE 4. Impulse-response functions for a family of cylinders with depths as shown. 

D Amplitude Period T 
0.125 0.0165 2.2 2.189 
0.25 0.0058 3.0 2.972 
0.5 0.0014 3.7 3.701 

TABLE 2. Amplitude and period of the oscillatory error observed in computations of the 
impulse-response function with 16 segments. The last column shows the period of the lowest 
irregular frequency, computed from (28). 

of the inverse sine transform it follows that 

L(t) = - 2r~t-~  - [ 2 4 ~  + 48m( XI)] t-' + o(t-'), (26) 

where M ( x I )  is defined in $3. The maximum difference between this asymptotic 
approximation and the results plotted in figure 4 is 0.006 for t > 7.1 (t > 8.3 for 
D = 2). The leading term in (26) has been derived by Kotik & Lurye (1964). 

Integration of (26) with respect to time gives the corresponding asymptotic 
expansion for the added-mass coefficient, 

M(t )  = M( XI) + ~ t - ~  + [ 6 ~  + 12M( XI)] t-4 + ~ ( t - ~ ) ) .  (27) 

For small values of D,  the numerical results for L(t) and M(t )  contain a noticeable 
oscillatory component which persists for large values of time, contrary to (26) and 
(27). Table 2 shows the amplitude and period of these oscillations, for computations 
with 16 segments on the body. Tests with 32 segments indicate that this error is in- 
versely proportional to the number of segments. The results plotted in figures 3 and 4 
are based on linear extrapolation of the computations with 16 and 32 segments, 
to suppress the oscillatory error, but a small residual oscillation is perceptible for the 
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smallest depth ( D  = 0.125). A time step of 0.1 is utilized in these computations, and 
has been confirmed by tests with 0.05. 

Table 2 indicates that the oscillatory component is roughly proportional to the 
inverse square of the depth D. This error can be plated to the singular limit D = 0, 
where the right-hand side of (16) vanishes due to cancellation of the Rankine source 
and its image. Since the limiting solution of (16) is the velocity potential for the 
circular disk, the determinant of the coefficient matrix in (16) must be zero and the 
Fredholm determinant of (4) must vanish when the convolution integral is neglected. 
Thus the numerical procedure adopted here is ill-conditioned for small cylinder 
depths . 

A striking agreement may be noted in table 2 between the observed period of the 
oscillatory error and the period of the first eigensolution for the interior domain of 
the body, subject to the linearized free-surface boundary. condition and to a 
homogeiieous birichlet boundary condition on the body surface. This interibr 
eigensolution corresponds to the first ‘irregular frequency ’ for solutions of the 
integral equation analogous to (4) in the frequency domain (cf. Ursell 1981). For the 
circular cylinder the wavenumbers of the axisymmetric eigensolutions are zeros of 
the Bessel function Jo(k), and the irregular frequencies follow from the dispersion 
relation 

(28) ue = k coth (kD). 

The corresponding period T = 2x10 is shown for the first zero, k = 2.4048. . . , in the 
last column of table 2. 

Adachi & Ohmatsu (1979) have considered the numerical solution of (4) in the time 
domain, and state that there is no effect on this solution from the irregular 
frequencies. (The opposite conclusion is reached by these authors when the transient 
problem is formulated in terms of a similar integral equation for the source strength 
on the body surface.) However, the proof of Adachi & Ohmatsu is based on 
orthogonality considerations which do not apply strictly to the discretized integral 
equation. Since the amplitude of the observed oscillatory error is proportional to the 
scale of discretization, it is possible to reconcile the present observations with the 
analysis of Adachi & Ohmatsu, and to conclude that there is indeed a connection 
between the irregular frequencies and the oscillatory error for large times in the 
impulse-response function. 

5. Comparison with the frequency-domain solution 
Following Wehausen (1971), the added-mass and damping coefficients for harmonic 

motion of the body with frequency w can be expressed in terms of the impulse-response 
function by the Fourier transforms 

and 

m 
p(w)  = /%(oo)+J L(t)  coswt dt 

0 

A(@) = w s,” L(t) sinwt dt. 

Computations have been made for the circular cylinder D = 0.5, based on 
numerical integration of (29) and (30) using the trapezoidal rule with a time step of 
0.1. The integrals are truncated a t  t = 15, and the subsequent contribution is 
estimated using (26) and the complex exponential integral. Various tests with smaller 
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FIGURE 5. Damping and added-mass coefficients for the cylinder D = 0.5. Solid lines are computed 
from the Fourier transforms (29) and (30) of the impulse-response function. Symbols ( + )  denote 
the frequency-domain computations by Sclavounos (private communication) using a three- 
dimensional panel method. 

time steps or Filon-type quadratures confirm the accuracy of this simple approach 
throughout the range of wavenumbers described below. Similarly, a comparison using 
16 and 32 segments on the body surface reveals a maximum difference of 0.008, and 
suggests that  16 segments are sufficient to produce at least two decimals’ accuracy 
in the added-mass and damping coefficients. There is no apparent non-uniformity in 
the vicinity of the irregular frequency. 

The more accurate results with 32 segments are plotted in figure 5, as functions 
of the wavenumber K = w2, based on the evaluation of (29) and (30) in wavenumber 
increments of 0.01. Assuming that the computational errors in these results are 
quadratic in the number of segments, the comparison indicated above implies an  
accuracy of the order of 0.002 for these computations. 

Also shown in figure 5 are independent computations for the same cylinder, 
performed directly in the frequency domain with a three-dimensional panel code 
(Sclavounos, private communication). In the latter work a Galerkin approach is 
followed, and the cylinder is discretized in one quadrant with 2, 8, 32 and 128 flat 
panels. The added-mass and damping coefficients denoted in figure 5 by the symbols 
(+) are derived from the latter sequence by Richardson extrapolation. For values 
of K less than 2.0 the maximum differences relative to  the time-domain results (solid 
curves) are 0.003 for the added-mass coefficient and 0.001 for the damping coefficient. 
The maximum differences for larger values of K are 0.006 and 0.007, respectively, 
at the wavenumbers 2.5 and 3.0 adjacent to  the first irregular frequency (K = 2.882) ; 
it is expected that these larger differences are due to computational errors in the 
frequency-domain computations. Thus the expected accuracy of order 0.002 is 
confirmed in the computations based on the time-domain solution. 
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6. Response of a freely-floating cylinder 
The vertical equation of motion for a floating body can be derived from its 

impulse-response function by adding the inertial and hydrostatic forces to (25). Thus, 
in the absence of an external force, the vertical displacement y ( t )  satisfies the equation 

(31) 

where m is the mass of the body, and A is its waterplane area. Appropriate initial 
conditions must be specified for the displacement y(0) and the velocity y’(0). 

Following the analogous two-dimensional study by Yeung (1982), two canonical 
problems are defined where: (1) y(0) = 1 while y’(0) = 0; and (2) y(0) = 0 while 
y’(0) = 1. In  the first problem, where the response is denoted y l ( t ) ,  the body is 
initially a t  rest in a position elevated from the state of hydrostatic equilibrium. In 
the second problem the response y2( t )  results from initial conditions with the body in 
its equilibrium position, moving with a unit velocity. The latter condition implies a 
unit delta-function acceleration a t  t = 0, which must be added to the regular 
function y;(t)  to give the total acceleration. 

If y = y l ( t )  is substituted in (31), and this equation is differentiated with respect 
to time, it follows that 

[m + M(O)] y“(t) + Ay(t) + y”(t - 7 )  L(7) d7 = 0, 
0 

[m+M(O)]y;l’(t)+Ayl;(t)+ yy(t-7)L(7) d~+y;(O)L(t) = 0. (32) J-: 
Alternatively, if y = y 2 ( t )  is substituted in (31), 

[m+M(O)]y;(t)+Ay,(t)+[; y ; ( t - ~ ) L ( ~ ) d r + L ( t )  = 0, (33) 

where the last term results from the acceleration a t  t = 0. Comparison of (32) and 
(33) and the initial conditions appropriate to each case yields the relation 

where (31) has been used to evaluate yr(0). Yeung (1982) derives the same relation 
from a more complicated procedure involving the integral equation for the velocity 
potential. (In the two-dimensional case treated by Yeung the waterplane area A is 
replaced by the width of the body a t  the free surface.) 

Numerical solutions of (31) may be developed from the impulse-response function 
evaluated in $4. Illustrative results are shown in figure 6 for the cylinder with depth 
D = 0.5. In  the present units, A = x and m = AD = 0.51~ in accordance with 
Archimedes’ principle. The results shown for yl(t) and y2( t )  are for non-dimensional 
times between 0 and 30, during which the cylinder performs approximately five cycles 
of a decaying oscillatory motion. Qualitatively similar figures have been presented 
for various two-dimensional bodies by Maskell & Ursell(l970) and Yeung (1982), and 
for the initial displacement of a floating hemisphere by Kotik & Lurye (1968). There 
is a weaker damping effect from the radiated waves in three dimensions, and thus 
a slower decay of the oscillatory motions. 

For large values of time, Kotik & Lurye (1964) show by Fourier analysis that the 
displacement y l ( t )  has the asymptotic form 

2-2 
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FIGURE 6. Free-body motions following an initial displacement (solid line) or initial velocity 
(broken line). 

where the first result holds in general for a three-dimensional body. Analysis of the 
extinction rate in figure 6 indicates that this stage of the motion can be approximated 
by a harmonic function with amplitude exp(-O.O8t). Thus there is an initial 
oscillatory state of motion with this amplitude, followed ultimately by the monotonic 
decay (35). Since these two amplitudes are comparable when t z 250, the total 
number of oscillatory cycles is apparently of the order of 40. This may be compared 
with the analogous estimate of nine cycles by Maskell & Ursell (1970) for the 
two-dimensional semicircular profile. 

The results shown in figure 6 are computed from the impulse-response function 
described in $4, with 16 segments on the body and a time step of 0.1. A third-order 
Runge-Kutta method is employed to solve (31) with the same time step. Comparisons 
with 32 segments on the body show maximum differences in the third decimal place, 
and in the fourth decimal place for the maximum amplitude of each cycle. Separate 
computations of the functions y1 and yz have been performed, and checked for 
consistency in accordance with (34). 

7. Discussion 
A computational procedure has been demonstrated for analysing the transient 

vertical motions of a floating axisymmetric cylinder. The same procedure may be 
applied to an axisymmetric body of arbitrary profile by using a more general 
geometrical discretization similar to that of Fernandes (1983). The analysis of 
axisymmetric bodies may be extended to other modes of motion where the angular 
dependence of the motion can be separated, provided a modified Green function is 
used corresponding to a ring source with the same angular dependence. In cases where 
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there is a non-zero normal body velocity a t  the free surface the numerical solution 
may be more complicated, with special care required to analyse the oscillatory 
behaviour of the Green function for large times. 

If this method is to be useful in practice, the analogous diffraction force exerted 
on a fixed body by an impulsive wave also must be considered. Wehausen (1971) 
derives an appropriate extension of the Haskind relations to express the transient 
diffraction force in terms of the forced-motion velocity potential. 

For fully three-dimensional bodies a two-dimensional integral equation must be 
solved with a discretization of the body in panels. It remains to show that this 
approach can be applied in the time domain, with sufficient numerical accuracy to 
provide reliable estimates of the relevant hydrodynamic forces, but no fundamental 
difficulty is expected. 

Since Fourier transforms provide a simple relation between the time and frequency 
domains, it  is appropriate to consider the possible advantages of each approach in 
the context of computations for practical three-dimensional vessels. In  the frequency 
domain a complex system of linear equations is derived from the time-harmonic Green 
function and solved separately for each frequency. To account for wave effects in the 
damping and added-mass coefficients, the scale of geometric discretization on the 
body surface must be small relative to the wavelength. Special precautions are 
necessary in the vicinity of the irregular frequencies. This approach is well established 
and has been applied widely to the design of large offshore structures to predict their 
interactions with surface waves of moderate to long wavelengths. Typically such 
computations are performed using 100-500 panels, but current efforts in this field 
seek to extend N by an order of magnitude. 

It is remarkable that the impulse-response function can be obtained by a 
time-stepping procedure with only one initial inversion of the real matrix (7). Since 
the solution of a linear system of equations requires O(W) computations, this is the 
dominant computational burden if N is sufficiently large, and the possibility exists 
that the time-domain solution will be a more economical technique to utilize. The 
frequency-domain characteristics may be determined by direct computations at (say) 
20 frequencies, or by Fourier analysis of the time-domain response at 200 time steps. 
Similar matrix techniques can be used in both cases to solve the respective systems 
of linear algebraic equations, with a computational burden proportional to the cube 
of the matrix dimension. If the same number of panels is used in each case, the (real) 
time-domain system can be solved in i th  the time required for the (complex) 
frequency-domain system. Since the latter must be repeated for each frequency, there 
is a theoretical advantage of &, in favour of the time-domain approach. For this 
comparison to be relevant, N must exceed the number of time steps. 

An additional advantage of the time-domain approach is that the damping and 
added-mass coefficients can be evaluated over a broad range of frequencies, without 
the need for a fine discretization of the body geometry commensurate with short 
wavelengths. Similarly, little or no concern is required with respect to the irregular 
frequencies. Indeed, the present results suggest that the magnitude of the large-time 
oscillatory error in the computed impulse-response function may provide a useful test 
of the adequacy of the discretization. 
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Appendix. The Green function 

(1960, eq. 13.49) in the form 
The appropriate Green function in (4) can be derived from Wehausen & Laitone 

G(r, r’, z, z’, 8, t )  = ---+2 [l-cos(kit)l exp[k(z+z’)] 6 
xJ0(k(r2+rt2-2rr’  cos8)i)dk) (A 1 )  

where J ,  denotes the Bessel function of the first kind and 

The corresponding ‘ring source’ is obtained by integrating (A 1) with respect to the 
angular coordinate 8. The result for the first term in (A 1 )  is the Rankine ring source, 

where the complete elliptic integral of the first kind K ( m )  is defined by Abramowitz 
and Stegun (1964), 

and the parameter m is defined by 

p* = [ ( rkr’ )2+ (z-z’)2]i, (A 4) 

The normal derivative of (A 3) with respect to the source point is 

where E ( m )  is the complete elliptic integral of the second kind. 
The image source given by the second term in (A 1 )  is treated in a similar 

manner, with the negative of the vertical source coordinate z‘ substituted throughout. 
The integral of the Bessel function in (A 1)  is given by Watson (1952, equation 
1 I .42( 16)) and the complete expression for the free-surface ring source takes the form 

Jo2’ Gd8 = G(O)(r, r’, z ,  2’) +G(F)(r, r’, z ,  z’, t ) ,  (A 7 )  

where 

and 

G(F) ( t )  = 4x JOm [ l  -cos (kit)] exp [k(z+z’)] Jo(kr) J,(kr’) dk. (A 9) 

note that GcF)(t) and its first derivative both vanish at  t = 0. The normal derivative 
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of (A 8) follows from (A 6), with the sign of z’ changed in the image term, and the 
normal derivative of (A 9) can be evaluated under the integral sign using the relation 
Ji = - J1. 
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